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1 Intent

The Adaptive Pipeline pattern (1) decouples the compositional structure of filters, which perform transformations on a
data stream, from the algorithms used to implement these filters, and (2) enables both to be changed dynamically and
independently, to allow an implementation to adapt itself to the run-time environment. This pattern distinguishes itself from
other pipeline patterns by addressing quality of service (QoS) issues, which are relevant to a large class of applications.

2 Motivation

A variety of software systems, ranging from communications protocols to image processing tools, apply a series of
transformations to a data stream. Such software systems are generally structured as a set of modular components, each
implementing one transformation, that communicate via a common interface. This recurring design pattern, known as
Pipes and Filters, allows arbitrary processing tasks to be constructed from modular building blocks, and benefits from
the reusability that arises due to the functional overlap in these tasks [7, 9]. Software libraries that are built using this
architecture can be easily extended to support new processing requirements as new content types, communication protocols,
and technologies emerge. However, since the applicability of the Pipes and Filters pattern is limited to systems where the
pipeline is fixed throughout its execution, it does not address the following important design considerations:

� Performance Sensitivity: Many important software systems are resource intensive and/or sensitive to variations in
resource availability. The perceptible quality of distributed client server systems (e.g. the world wide web) is heavily
dependent on the available CPU cycles and network bandwidth.

� Computer and Network Heterogeneity: For software to be widely useful, it must operate in computing environments,
ranging from hand-held devices to powerful workstations, and in communications environments, ranging from
telephone lines to high speed and wireless networks. Whereas the computational resources available to an application
may vary by factors of ten, the available network resources may vary by orders of magnitude.

� Variation in Resource Availability: Changes in system load will cause the availability of resources to change
significantly over time. This often results in annoying stalls, poor presentation quality, and/or eventual failure.

�This research was supported in part by IBM, Intel, the National Science Foundation (Research Initiation Award CCR-9409666),
NASA, Mitsubishi Electric Research Laboratories (MERL), Sun Microsystems Inc., and the University of Texas at Austin.
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Figure 1 : Filter Composition for a JPEG Decoder.

To address these concerns, performance-sensitive software systems must adapt themselves to widely heterogeneous and
dynamically changing environments. Applications can do this by dynamically adjusting their resource consumption to
maximize the perceived quality under the current conditions. To be useful, such adaptive applications must be as efficient
as their static counterparts.

The Adaptive Pipeline is an object structural pattern for developing efficient, adaptive pipeline systems. Specifically, it
enables the development of adaptive systems by allowing a pipeline’s structure, as well as the implementation of its filters,
to be changed independently during the execution of a program. This dynamic composition of filters allows an application
to adjust the resource consumption of the pipeline at runtime, to adapt to different computing and communications
environments as well as changes in resource availability. The Adaptive Pipeline pattern enables the development of
performance-sensitive systems by allowing filters to tightly integrate their implementations using type parameterization as
an implementation technique. Significant performance gains can be achieved by allowing a filter’s implementation to be
parameterized by other filters, since the compiler can make use of inline methods to minimize the overhead of crossing
multiple abstraction boundaries. This type of composition effectively collapses a sequence of filters into statically bound,
but highly efficient code. A carefully engineered balance between the use of static and dynamic binding of filters can allow
for efficient implementation while maintaining a modular, configurable architecture.

To illustrate how the Adaptive Pipeline pattern facilitates the development of adaptive, performance-sensitive applications,
consider the design of a multimedia toolkit that allows applications to process digital audio, video, and images. The
toolkit must perform the tasks of accessing, decoding, and manipulating objects that may be encoded in a variety of
compressed formats, (e.g. MPEG, JPEG, H.261, etc.). To accomplish these tasks the toolkit must implement a number of
transformations, such as primitive decompression and image processing operations, that may be successively applied to a
media stream. Since many compression algorithms employ the same set of transformations (e.g. Huffman coding, discrete
cosine transform, etc.), and many applications perform different permutations of the same image processing operations
(e.g. scale, clip, rotate, etc.), it is desirable to implement these operations as composable filters in pipeline architecture. If
the Adaptive Pipeline pattern is used, then different implementations of a filter can be used interchangeably to adjust the
resource cost and quality characteristics of the pipeline at run time. This provides an application using the toolkit with a
powerful mechanism for adapting the quality of presentation to the available resources.

Such adaptation is possible, for example, in JPEG video decoding. Figure 1 shows a pipeline of filters that collectively
perform the the sequence of transformations required by the JPEG standard. In this pipeline, the compressed input is
decoded into 8x8 blocks of frequency coefficients, which are then inverse quantized, converted into a pixel representation
using the inverse discrete cosine transform, and finally converted into a displayable color space. The filters shown having a
solid border and connected by arrows are dynamically configurable. Thus different implementation of these modules can be
used interchangeably at runtime to adapt various aspects of the presentation quality (e.g. frame rate, fidelity, etc.) to match
the available resources. The Block Decode filter is shown with a dashed border to indicate that it has been statically bound
to the JPEG Syntax Decode filter using type parameterization. Since this filter is invoked with high frequency and has
little need for dynamic reconfigurability, binding it statically will significantly improve the pipeline’s runtime performance,
without sacrificing flexibility. Since the multimedia toolkit is designed using the adaptive pipeline pattern, other decoding
and presentation processing tasks can be similarly composed to realize adaptive, highly efficient implementations.
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Figure 2 : Structure of the Adaptive Pipeline Pattern

3 Applicability

The Adaptive Pipeline pattern should be applied to design the following types of systems:

� Resource intensive applications that must run in environments that are highlyheterogeneous with respect to bandwidth
and computational capacity.

� Communication protocols, which normally contain several abstraction layers with a number of functional components
residing in each layer.

� Other software systems in which a stream of data passes through a series of transformations. Specific types of
applications include encoders and decoders for data streams that are tagged, compressed, encrypted, or encoded (e.g.
HTML pages, MPEG streams, encrypted email, RPC arguments/results, etc.) for transfer across networks.

Pipeline architectures in general are applicable to the development of a variety of software systems. However,
experience in building many of these systems has shown that their usefulness depends a great deal on efficient
implementation and/or the ability to dynamically adapt to the runtime environment [1, 2, 4, 8, 11, 14, 15]. Whereas
the need for adaptation motivates dynamic configurability of filters, the need for efficiency motivates the selective
use of type parameterization for performance-critical components.

4 Structure and Participants

The structure of the Adaptive Pipeline pattern is illustrated in the Booch class diagram shown in Figure 2.

The key participants in the Adaptive Pipeline pattern include the following classes:

� InputSide defines the interface for inputting data or control information to a filter. This also defines the filter’s type
for the purposes of composition.

� OutputSide provides a reusable implementation for attaching a component’s output to another component’s input.

� Port maintains the state of some attachment between components. The OutputSide uses ports to attach and output
to multiple filters.
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Figure 3 : Collaborations in the Adaptive Pipeline Pattern

� Filter implements the transformation of input data (i.e., it defines the Transform() method). A Filter inherits from
InputSide, which defines its type and input interface, and OutputSide, which provides the implementation to attach
to other components.

5 Collaborations

Figure 3 illustrates the three phases of collaborations in the Adaptive Pipeline pattern. F1 is a filter whose output will be
the input for filter F2.

1. Dynamic Composition : In this phase, an output port of filter F1 is attached to filter F2. The OutputSide implementation
inherited by filter F1 invokes the Attach() method on one of its Port objects, which saves a reference to filter F2,
so that subsequent Output() and Control() operations on that port will be forwarded to filter F2.

2. Data Transformation : In this phase, input data that has been transformed by F1 will now be passed to F2 so that
the F2’s transformation can be performed. F1 invokes its OutputSide::Output() method, which invokes the
Output() method of the appropriate Port object. The port object passes the data to F2 by invoking F2’s Input()
method. After F2 has transformed the input data, it can then forward the data on to the next filter in the same fashion.

3. Control Operation : In this phase control information is passed from F1 to F2. To do so, F1 invokes its Output-
Side::InvokeControl() method, which calls the InvokeControl() method on the appropriate Port object.
The port object passes the control information to F2 by invoking F2’s Control() method. The call returns after F2
has appropriately updated its state.

As a concrete example of these collaborations, recall the JPEG decoder pipeline in Figure 1. Dynamic Composition
occurs when the Inverse Quantize filter attaches itself to an Inverse Discrete Cosine Transform filter. Data Transformation
occurs when the Inverse Quantize filter de-quantizes the data and passes it to the Inverse Discrete Cosine Transform filter.
Finally, the Inverse Quantize filter provides a control operation to allow other modules to change its internal quantization
parameters.
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template <class I> // I is the input DataType
class InputSide f
public:

virtual void Input(I& data, int port = 0) = 0;

virtual bool Control(ControlType& op) f return false; g;
g;

template <class O> // O is the output DataType

class OutputSide f
public:

virtual bool Attach(InputSide<O>& m, int iport=0, int oport=0);
virtual bool Detach(int oport=0);

protected: // these should only be invoked internally

inline void Output(O& data, int oport = 0) f outport[oport].Output(data); g;
bool InvokeControl(ControlType& op, int oport=0);

Port<O> outport[MAX PORTS];
g;

Figure 4 : InputSide and OutputSide classes.

6 Consequences

Pipeline architectures in general provide the following benefits:

� They allow filters to be reused to implement new protocols.

� They help create extensible applications by allowing filters to be easily added or removed according to a well-defined
set of interfaces.

The Adaptive Pipeline pattern has the following additional benefits:

� It allows the implementation to be configured at run time to adapt to heterogeneous environments and changing
resource availability.

� It addresses the tension between modularity and performance by allowing performance-critical filters to be efficiently
composed using type parameterization.

Just as all pipeline architectures, the Adaptive Pipeline has the following drawbacks:

� Black box abstractions can sometimes be inefficient in cases where filters would achieve significant performance
benefits by more tightly coupling their implementations.

7 Implementation

The following issues should be considered when implementing the Adaptive Pipeline pattern.

1. Type-checked composability.
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class A : public InputSide<X>, public OutputSide<Y> f ... g;
class B : public InputSide<Y>, public OutputSide<Z> f ... g;

// dynamically bind filter a to filter b

A a;
B b;

a.Attach(b); // a.Output() -> b.Input()

...

a.Input(data); // will transform data and pass to b.Input()

Figure 5 : Dynamic composition.

The interfaces between filters should be uniform to allow arbitrary composition of filters, yet they should be strongly
typed to prevent misconfiguration. Although uniform input and output interfaces can be inherited from the InputSide

and OutputSide base classes, respectively, the composition of a OutputSide of data type X with a InputSide of data
type Y must be prevented. This can be effectively accomplished in C++ using templates to parameterize the InputSide
and OutputSide base classes by the data type produced or consumed. This results in an extensible set of similar, yet
distinguishable interfaces that allows the compiler to reject the composition of filters whose respective input and output data
types do not match. To see this, observe that the signatures for the OutputSide::Attach(), OutputSide::Output(),
and InputSide::Input() methods shown in Figure 4 all incorporate the template parameter. Thus, if a filter that
inherits from OutputSide<X> attempts to attach to a filter that inherits from InputSide<Y> a compilation error will
occur since the former filter’s Attach() method requires a InputSide<X> as its first parameter. Similarly, type checking
also guarantees that the former filter can only output objects of type X and the latter’s Input() method will only be passed
objects of type X.

2. Input and Control operations.

The specific function of a filter is defined by its implementation of the Transform() and Control() methods. The
Input() method implementation normally invokes Transform() to execute the algorithm for the specific transformation
that the filter performs, and then invokes Output() to pass the transformed data on to the downstream filter(s). The
signature for Input() (see the code in Figure 4) includes the input data and an optional input port, which may be used to
determine how the data is to be processed. For example, a color conversion filter that combines blocks from different color
planes may accept red blocks on port 0, green blocks on port 1, etc.

The Control() method allows a filter to pass, to another filter, information that will influence the manner in which the
latter processes its input data. For example, passing a new set of quality of service parameters via the Control() interface
may cause a filter to modify its transformation algorithm or reconfigure its internal filters. It is desirable to make the
Control() interface uniform, while allowing different filters to process different types of control operations. This can
be accomplished by defining the type of the argument to Control() as a reference to the abstract class ControlType
and instantiating all control operations as concrete subclasses of ControlType. Each Filter class then overrides the
Control() method with an implementation that selectively processes the particular control operations that the filter is
interested in, and invokes the default implementation, InputSide::Control(), for all others.

3. Dynamic composition.

Figure 5 shows how a filter of type A is dynamically bound to filter of type B.

Implementing dynamically composable filters requires that each Filter object maintain a modifiable set of references
to the other filters to which it is attached. The Attach() and Detach() methods are responsible for updating this set
during program execution as filter composition changes. The Output() and Control() methods will reference members
from this set to pass data and control operations to the appropriate downstream filters. Management and use of this set is
simplified by the use of a Port class, which encapsulates the state of an attachment. The port set, shown as a simple array
in the OutputSide class definition above, allows attached filters to be referenced by numeric handles, i.e. port numbers,
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template <class O> // O is the output DataType

class Port f
public:

inline void Output(O& data, int oport = 0) f InputSide->Input(data); g;
protected:

InputSide<O> *InputSide; // the filter attached to this port

int inputPort; // input port attached to this port

bool attached; // true if a filter is attached

g;

Figure 6 : Port class.

rather than explicit pointers. The benefit of this approach is that the code for maintaining and using references to other
filters has been factored out into a reusable implementation class. The implementation of the Port class is shown in Figure
6.

4. Static versus dynamic binding.

A general problem with highly modular and dynamic software architectures is that excessive layering often leads to
inefficient implementations. Runtime costs are paid each time a program’s control flow crosses an abstraction boundary,
which has been enforced for the sake of information hiding and a high degree of modularity. [1, 2, 3, 14, 15].

In implementing the Adaptive Pipeline pattern, the performance penalty of a dynamically dispatched procedure call is
incurred for each Input() operation between dynamically bound filters. The higher the frequency of invoking such
dynamically bound methods, the greater the performance penalty.

Static type parameterization of filters can significantly reduce the overhead of crossing filter boundaries by allowing
efficient choices (such as inlined method calls) to be made during code generation. Type parameterization of filters can be
implemented as shown in the example in Figure 7. Here the BlockFilter filter provides an inline method that enables it
to be tightly integrated with other filters, such as the Decoder.

When implemented as above, static composition provides the compiler with enough information to effectively collapse a
sequence of filters into highly efficient code, while maintaining a level of abstraction that is purely syntactic (i.e., has no
run-time cost). Whereas inlining in general does not always result in better performance, empirical evidence suggests that
careful selection of methods to be inlined, as well as the register allocation strategies of an optimizing compiler, can have a
positive effect on performance [5]. The tradeoff of static binding is that once filters are bound in this fashion, they cannot
be dynamically reconfigured.

A carefully engineered balance between the use of static and dynamic binding of filters can allow for efficient implementation
while maintaining a modular, configurable architecture. Whereas static binding should be used to improve performance for
filters that have minimal reconfigurability demands and whose input methods are invoked with high frequency, dynamic
binding is best suited for filters that have high reconfigurability demands and low invocation frequency. A useful adaptive
composition framework will provide mechanisms that allow filters to be composed both statically and dynamically. This
allows implementers to make the same kind of abstraction tradeoffs that are evident in the ANSI C++ Standard Template
Library (STL) [10, 13], which is a model for preserving syntactic abstractions while balancing the tension between static
and dynamic binding to incur minimal run-time overhead.

8 Sample Code

In this section,we sketch an implementation for the JPEG decoder discussed earlier,and show how dynamic reconfigurability
is used to adapt the quality of presentation to suit different environments. Recall from Figure 1(a) that a JPEG decoder can
be composed of the following filters: a syntax decoder, a block decoder, an inverse quantizer, an inverse discrete cosine
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class BlockFilter : public InputSide<Block>, public OutputSide<Block> f
public:

virtual void Input(Block& data, int port = 0) f...g;
virtual bool Control(ControlType& op) f...g;
inline void Transform(Block& data, int port = 0) f...g;

g;

template <class F> // F is the type of filter to bind to

class Decoder : public InputSide<Stream>, public OutputSide<Block> f
public:

Decoder(F& filter) : f(filter) f ... g;
virtual void Input(Stream& data, int port = 0) f

... // create Block b

f.Transform(b); // inline method call

g;
private:

F f;

g;

BlockFilter f; // instantiate filter

Decoder<BlockFilter> df(f); // statically bind Decoder d to Filter f

Figure 7 : Static composition via type parameterization.

BlockDec bd; // construct a block decoder
JPEGSyntaxDec<BlockDec> syntax(bd); // parameterize into JPEG syntax decoder

IQDec iq; // construct inverse quantizer

IDCTDec idct; // construct inverse DCT

ColorConversion cc; // construct color converter

// construct the pipeline by attaching the modules

syntax.Attach(iq);

iq.Attach(idct);

idct.Attach(cc);

Figure 8 : Dynamic composition.
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// detach the old color conversion filter

idct.Detach();

// instantiate new faster color conversion filter

FastColorConversion fc;

// attach three pipelines to new color converter

idct.Attach(fc);

Figure 9 : Dynamic reconfiguration.

// One of JPEGSyntaxDec’s internal methods contains the following code:

// instantiate the control operation (qp is the new set of quantization parameters)

SetQParams op(qp);

// cause op to be passed to IQ’s Control() method

if (InvokeControl(op) == false)
HandleError();

Figure 10 : Control operation.

transform, and a color converter. Since the block decoder is invoked with high frequency, it is parameterized into the JPEG
syntax decoder to reduce the invocation overhead. The remaining filters are less performance-sensitive, and are configured
dynamically. The code sample in Figure 8 shows declarations of the filters and how they are dynamically composed to
generate a JPEG decoder.

Dynamic configurability allows the JPEG decoder to adapt the quality of presentation to the environment, for example, by
selecting a color conversion algorithm that provides the appropriate quality versus speed tradeoff. If it becomes necessary to
use fewer CPU cycles to maintain a certain frame rate, a faster, lower quality color conversion algorithm can be dynamically
configured as illustrated in Figure 9.

As stated previously, filters can pass control information via the Control() interface. Figure 10 shows how the syntax
decoder can request the inverse quantizer to change its quantization parameters.

9 Known Uses

Pipeline architectures have been used to develop many different types of software systems in which a sequence of
transformations on a data stream are performed. For example, the UNIX operating system provides users with a number of
reusable programs (e.g. sed, grep, awk) that can be pipelined together in an arbitrary fashion to implement more complex
data transformations. The same type of flexible module composition is used by the STREAMS subsystem to implement
sequences of transformations (e.g. network protocol stacks) on input/output streams[12]. Since UNIX and STREAMS both
pass data between filters via repositories (a buffer of ASCII characters and a queue of STREAMS messages, respectively),
they are pure occurrences of the Pipes and Filters architecture [7, 9].
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The x-kernel is another compositional pipeline subsystem that performs a function similar to STREAMS, but also supports
finer-grained composition of filters. Rather than implementing protocols as separate filters, the x-kernel factors out common
functions such as message demultiplexing, selective retransmission, etc., into a large number of composable micro-protocol
filters. Since the x-kernel does not make use of type parameterization, increased granularity of decomposition decreases
the efficiency of the implementation. To improve performance, the x-kernel eliminates the need for data repositories (and
the associated overhead of copying) by pushing data through its filters. Thus the x-kernel is more like an Adaptive Pipeline
architecture than UNIX or STREAMS.

The Adaptive Pipeline pattern has also been used to implement a toolkit for implementing Presentation Processing Engines
that support multimedia applications [11]. By allowing fine-grained composition of compression and image processing
filters, the toolkit facilitates the development of extensible presentation processing engines that can be dynamically
configured to adapt to changes in resource availability and user preferences. By incorporating static binding the toolkit
permits the efficient implementation of performance-sensitive multimedia applications.

10 Related Patterns

The Streams pattern [6] describes a software architecture where stream objects, representing queues of data elements, are
composed in a fashion that models data flow. Control flow is not explicitly represented at the architectural level, but is
instead captured as an internal feature of each stream object. This type of architecture is more suitable for systems in which
control flow is relatively static.

The Pipes and Filters pattern describes an architecture consisting of components that transform data (filters) and connections
that transmit data between these components (pipes) [7, 9]. This architecture effectively promotes reusability, maintain-
ability, and testability when the subtasks of a system can be easily identified and broken into independent but cooperative
components.

The Adaptive Pipeline pattern is, in principle, similar to the Pipes and Filters architecture, but has the following fundamental
differences:

� The applicability of the Pipes and Filters pattern is limited to systems where the order in which filters are applied to
a data stream is strongly determined. The Adaptive Pipeline pattern extends the applicability of this architecture to
adaptive systems through the use of dynamic (i.e. run-time) binding of filters.

� A basic property of the Pipes and Filters architecture is that data is not shared between filters. Although the
independence of filters is fundamental to the Adaptive Pipeline pattern, sharing of information between filters is not
prohibited. Sharing a certain amount of information is necessary in many practical implementations, and is useful in
improving the efficiency of implementation.

� Whereas the Pipes and Filters pattern describes both push and pull data flow models, which may use data repositories
in between filters, the Adaptive Pipeline pattern defines only a push model that does not include pipes. Implementation
experience has shown that buffering and copying significantly degrade performance; the use of these mechanisms
should be demotivated at the design stage, and only implemented (within the filters) when absolutely necessary.
Whereas the use of pipes allows the filters in a pipeline to operate in parallel, in the absence of pipes, the delineation
of application-specific data units allows multiple pipelines to operate in parallel.
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